Dariusz Kacprzak https://orcid.org/0000-0002-8999-1044
ARTICLE

(Polish) PDF

ABSTRACT

Multiple Criteria Decision Making methods, such as TOPSIS, have become very popular in recent years and are frequently applied to solve many real-life situations. However, the increasing complexity of the decision problems analysed makes it less feasible to consider all the relevant aspects of the problems by a single decision maker. As a result, many real-life problems are discussed by a group of decision makers. In such a group each decision maker can specialize in a different field and has his/her own unique characteristics, such as knowledge, skills, experience, personality, etc. This implies that each decision maker should have a different degree of influence on the final decision, i.e., the weights of decision makers should be different. The aim of this paper is to extend the fuzzy TOPSIS method to group decision making. The proposed approach uses TOPSIS twice. The first time it is used to determine the weights of decision makers which are then used to calculate the aggregated decision matrix for all the group decision matrices provided by the decision makers. Based on this aggregated matrix, the extended TOPSIS is used again, to rank the alternatives and to select the best one. A numerical example illustrates the proposed approach.

KEYWORDS

fuzzy numbers, MCDM, TOPSIS method, aggregation

JEL

C44

REFERENCES

Abdullah L., Adawiyah C. W. R., (2014), Simple Additive Weighting Methods of Multicriteria Decision Making and Applications: A Decade Review, International Journal of Information Processing and Management, 5/1, 39–49.

Behzadian M., Otaghsara S.K., Yazdani M., Ignatius J., (2012), A State of Art Survey of TOPSIS Applications, Expert Systems with Applications, 39, 13051–13069.

Bodily S. E., (1979), A Delegation Process for Combining Individual Utility Functions, Management Science, 25, 1035–1041.

Boran F. E., Genc S., Kurt M., Akay D., (2009), A Multi-Criteria Intuitionistic Fuzzy Group Decision Making for Supplier Selection with TOPSIS Method, Expert Systems with Applications, 36, 11363–11368

Cabała P., (2010), Zastosowanie współczynnika konkordancji w pomiarze zgodności ocen ekspertów, Przegląd Statystyczny, 57 (2–3), 36–52.

Chang C. W., Wu C. R., Lin H. L., (2009), Applying Fuzzy Hierarchy Multiple Attributes to Construct an Expert Decision Making Process, Expert Systems with Applications, 36, 7363–7368.

Chen C. T., (2000), Extensions of the TOPSIS for Group Decision-Making Under Fuzzy Environment, Fuzzy Sets and Systems, 114, 1–9.

Chen X., Fan Z. P., (2006), Study on the Assessment Level of Experts Based on Linguistic Assessment Matrices, Journal of Systems Engineering, 24, 111–115.

Chen X., Fan Z. P., (2007), Study on Assessment Level of Experts Based on Difference Preference Information, Systems Engineering-Theory & Practice, 27, 27–35.

Czogała E., Pedrycz W., (1985), Elementy i metody teorii zbiorów rozmytych, PWN, Warszawa. French J. R. P. Jr., (1956), A Formal Theory of Social Power, Psychological Review, 63, 181–194.

Hatami-Marbini A., Kangi F., (2017), An Extension of Fuzzy TOPSIS for a Group Decision Making with an Application to Tehran Stock Exchange, Applied Soft Computing, 52, 1084–1097.

Hwang C. L., Yoon K., (1981), Multiple Attribute Decision Making, Lecture Notes in Economics and Mathematical Systems, Springer. Jahanshahloo G. R., Hosseinzadeh Lofti F., Izadikhah M., (2006a), An Algorithmic Method to Extend TOPSIS for Decision Making Problems with Interval Data, Applied Mathematics and Computation, 175, 1375–1384.

Jahanshahloo G. R., Hosseinzadeh Lofti F., Izadikhah M., (2006b), Extension of the TOPSIS Method for Decision-Making Problems with Fuzzy Data, Applied Mathematics and Computation, 181, 1544–1551.

Kacprzak D., (2019), A Doubly Extended TOPSIS Method for Group Decision Making Based on Ordered Fuzzy Numbers, Expert Systems with Applications, 116, 243–254.

Kobryń A., (2014), Wielokryterialne wspomaganie decyzji w gospodarowaniu przestrzenią, Difin, Warszawa.

Liu S., Chan F. T. S., Ran W., (2016), Decision Making for the Selection of Cloud Vendor: An Improved Approach Under Group Decision-Making with Integrated Weights and Objective/Subjective Attributes, Expert Systems with Applications, 55, 37–47.

Łuczak A., Wysocki F., (2006), Rozmyta wielokryterialna metoda porządkowania liniowego obiektów, w: Jajuga K., Walesiak M., (red.), Taksonomia 13, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 1126, AE, Wrocław, 148–158.

Łuczak A., Wysocki F., (2008), Wykorzystanie rozmytej metody TOPSIS opartej na zbiorach alfa-poziomów do porządkowania liniowego obiektów, w: Jajuga K., Walesiak M., (red.), Taksonomia 15, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 1297, AE, Wrocław, 337–345.

Łuczak A., Wysocki F., (2011), Porządkowanie liniowe obiektów z wykorzystaniem rozmytych metod AHP i TOPSIS, Przegląd Statystyczny, 53 (1–2), 3–23.

Nadaban S., Dzitac S., Dzitac I., (2016), Fuzzy TOPSIS: A General View, Procedia Computer Science, 91, 823–831.

Ramanathan R., Ganesh L. S., (1994), Group Preference Aggregation Methods Employed in AHP: An Evaluation and an Intrinsic Process for Deriving Members’ Weightages, European Journal of Operational Research, 79, 249–265.

Roszkowska E., (2011), Multi-Criteria Decision Making Models by Applying the TOPSIS Method to Crisp and Interval Data, Multiple Criteria Decision Making, 6, 200–230.

Roszkowska E., (2012), Ocena efektywności decyzji gospodarczych w warunkach ryzyka z wykorzystaniem rozmytej metody TOPSIS, Optimum. Studia Ekonomiczne, 6 (60), 3–19.

Roszkowska E., Kacprzak D., (2016), The Fuzzy SAW and Fuzzy TOPSIS Procedures Based on Ordered Fuzzy Numbers, Information Sciences, 369, 564–584.

Rudnik K., Kacprzak D., (2017), Fuzzy TOPSIS Method with Ordered Fuzzy Numbers for Flow Control in a Manufacturing System, Applied Soft Computing, 52, 1020–1041.

Senvar O., Otay I., Boltürk E., (2016), Hospital Site Selection via Hesitant Fuzzy TOPSIS, IFACPapersOnLine, 49, 1140–1145.

Shemshadi A., Shirazi H., Toreihi M., Tarokh M.J., (2011), A Fuzzy VIKOR Method for Supplier Selection Based on Entropy Measure for Objective Weighting, Expert Systems with Applications, 38, 12160–12167.

Shih H. S., Shyur H. J., Lee E. S., (2007), An Extension of TOPSIS for Group Decision Making, Mathematical and Computer Modelling, 45, 801–813.

Xu Z. S., (2008), Group Decision Making Based on Multiple Types of Linguistic Preference Relations, Information Sciences, 178, 452–467.

Ye F., Li Y. N., (2009), Group Multi-Attribute Decision Model to Partner Selection in the Formation of Virtual Enterprise Under Incomplete Information, Expert Systems with Applications, 36, 9350–9357.

Yue Z., (2011), An Extended TOPSIS for Determining Weights of Decision Makers with Interval Numbers, Knowledge-Based Systems, 24, 146–153.

Zadeh L. A., (1965), Fuzzy sets, Information and Control, 8, 338–353.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0